Power Round Solution Duke Math Meet 2017

Problem 1.

We name these six people A, B, C, D, E, F. By pigeonhole principle, A has either three friends or three strangers among the other five people. Suppose A has three friends. Then without the loss of generality, we can assume B, C, D are A's friends. If any two of these three people are friends with each other, then together with A, they form a group of three of which every two are friends. If no two of these three people are friends, then B, C, D form a group of three of which no two are friends. Our statement follows either way. Similar argument if A has three strangers.

Problem 2.

Let c be a coloring function on K_n Define $f : c \mapsto G$ such that f(c) = G = (V, E) where $E = \{e \in E_K \mid c(e) = \text{red}\}$. It is surjective since any subgraph $G' = (V, E' \subseteq E_K)$ of K_n we can have a coloring which color the edges in E' with red and the rest edges in E_K with blue. It is a valid coloring, so f maps this coloring function to G'. The map f is also injective. To see that suppose $f(c_1) = f(c_2)$, then two subgraphs $f(c_1)$ and $f(c_2)$ has the same edge set. So two coloring c_1 and c_2 coincide on these edges. But on all the other edges, the color is blue. So two coloring are the same on all edges. So the map is one-to-one.

Problem 3.

Let c be a coloring on K_n . Then we denote \bar{c} be the opposite coloring function of c. That is, for any edge e, $\bar{c}(e) =$ blue when c(e) = red and $\bar{c}(e) =$ red when c(e) = blue. We can easily check that $c \mapsto \bar{c}$ is a bijective map on all coloring functions of K_n .

Suppose any coloring c on K_n yields either a red K_s or blue K_t , then \bar{c} yields either a red K_t or a blue K_s . This is true for all coloring \bar{c} . Thus, $R(t, s) \leq R(s, t)$.

To establish equality, let m = R(s,t) - 1. Then by definition, some coloring b on K_m does not contain any red K_s or blue K_t . Then \bar{b} does not contain any red K_t or blue K_s . This implies that R(t,s) > m = R(s,t) - 1. Therefore they must equal.

Problem 4.

- (i) See figure 1. Dashed lines are red edges and solid lines are blue edges.
- (ii) By Theorem 1.9, $R(3,3) \le 6$. By part (i), R(3,3) > 5. Therefore R(3,3) = 6.

Figure 1: Problem 4 (i)

Problem 5.

- (i) Let $n = R(s,t) \leq N$. For any complete graph K_N , we pick any n vertices and they form a complete subgraph K_n . For any coloring c on K_N , we have a unique coloring \bar{c} on K_n that coincides with c on the edges of K_n . Then, by definition of Ramsey number, this coloring will yields either a red K_s or a blue K_t . This is true for any coloring on K_N , so our statement follows.
- (ii) Let N = R(s-1,t) + R(s,t-1). Fix a vertex A in K_N . Then A has N-1 edges incident to it. By pigeonhole principle, A has either R(s-1,t) red edges or R(s,t-1) blue edges. If it has R(s-1,t) red edges, then the endpoints of these edges forms a subgraph $K_{R(s-1,t)}$. So for any 2-coloring, it contains a red K_{s-1} or a blue K_t . If it is the second case, we are done. If it is the first case, the red K_{s-1} and A forms a red K_s . So either way there's either a red K_s or a blue K_t . Similar arguments goes for the case where A has R(s,t-1) blue edges.
- (iii) Induction on n = s + t. It is trivial for base case where n = 2 since R(1, s) = 1 for any $s \in \mathbb{N}$. Suppose the statement is true for k. Then for s + t = k + 1, we have R(s-1,t) and R(s,t-1) are finite by induction hypothesis. Then apply part (ii), we have $R(s,t) \leq R(s-1,t) + R(s,t-1)$. Hence R(s,t) is finite.
- (iv) Again we use induction base on n = s + t. The base cases are easy to verify by problem 3 (i). Suppose the inequality is true for all s and t such that k = s + t. Then for all s, t where s + t = k + 1, we have

$$\begin{split} R(s,t) &\leq \binom{s+t-3}{s-2} + \binom{s+t-3}{s-1} \\ &= \frac{(s+t-3)!}{(s-2)!(t-1)!} + \frac{(s+t-3)!}{(s-1)!(t-2)!} \\ &= \frac{(s+t-3)!(s-1+t-1)}{(s-1)!(t-1)!} = \binom{s+t-2}{s-1} \end{split}$$

(v) For any $k \in \mathbb{N}$, $4k^2 \ge 2k \cdot (2k-1)$. So $4^n (n!)^2 \ge (2n)!$. Then,

$$\binom{2s-2}{s-1} = \frac{(2s-2)!}{(s-1)!(s-1)!} \le 2^{2s-2}$$

PAGE 2

Problem 6.

(i) Let $v_1, ..., v_{3s-1}$ be 3s - 1 vertices. Color the edge v_i and v_j with red if $i - j \in \{s, s + 1, ..., 2s - 1\} \pmod{3s - 1}$ and color all other edges with blue. Notice that 3s - 1 < 3s and $3 \cdot (2s - 1) < 2 \cdot (3s - 1)$. Then for any distinct i, j, k, we have $(i - j) + (j - k) + (k - i) = 0 \pmod{3s - 1}$. Therefore at least one of i - j, j - k and k - i is either less than s or greater than 2s - 1. So one of the edges among vertices v_i, v_j and v_k are colored blue. It then follows that this coloring contains no red K_3 .

Now it suffices to show that no blue K_{s+1} exists for this coloring. Suppose there is a blue $K = K_{s+1}$, then we can assume that v_1 is in the subgraph K. Accordingly, v_{s+1} , ..., v_{2s} can't be in the subgraph K. So in the set $P = \{v_2, ..., v_s, v_{2s+1}, ..., v_{3s-1}\}$, we need to have s vertices in K. Let edge $e_i = \{v_{i+1}, v_{2s+i} \text{ for } i = 1, ..., s - 1$. Then the e_i is colored red. There are s - 1 red edges but we need to pick s vertices in the set P. By pigeonhole principle, e_i is in K for some i. Then K can't be a blue K_{s+1} .

By this construction, there's a coloring on K_{3s-1} such that it contains neither red K_3 nor blue K_{s+1} . Hence R(3, s+1) > 3s - 1.

(ii) Part (i) showed that R(3,4) > 8. So we only need to verify that any 2-coloring on K_9 yields a red K_3 or a blue K_4 . Fix a vertex A. We know that A has 8 edges. Then we have three situations.

Suppose at least 6 of them are blue, then the endpoints of blue edges form a K_6 . By Theorem 1.9, it has either a red K_3 or a blue K_3 . Either case, together with A, the graph contains either a red K_3 or a blue K_4 .

Suppose at most 4 of them are blue. In other word, at least 4 edges incident to A are red. Then if any pair of the endpoints has a red edge, we are done. So all end points are connected with each other by blue edges. But that gives us a blue K_4 .

The only case that hasn't been verified is that 3 edges of A are red and 5 are blue. Now we consider other vertices. It turns out that if any vertex doesn't have exactly 3 red edges, by previous discussion, we can find either a red K_3 or a blue K_4 . So there are 27 red edges in total if add up the number of red edges on all 9 nodes. But notice that every edge has two endpoints, which means they were counted twice. So we have 13.5 red edges in K_9 . That leads to a contradiction. So at least one vertex doesn't have exactly 3 red edges. This concludes our proof.

Problem 7.

Suppose we have four points $a, b, c, d \in \mathbb{Z}_{17}$. Without the loss of generality, we can assume that $0 \leq a < b < c < d \leq 16$. In fact, we can also assume a = 0, otherwise we will just rotate the numbering to make a = 0.

Suppose they a red K_4 , that means $i - j = \pm 1, \pm 2, \pm 4, \pm 8 \pmod{17}$ for all $i, j \in \{a, b, c, d\}$. Let $S = \{1, 2, 4, 8, 9, 13, 15, 16\}$. Then $b, c, d, d - c, c - b, d - b \in S$. A straightforward search will show that no such b, c, d exist. Do the similar to \overline{S} will prove that no monochromatic complete subgraph in K_{17} .

There's a relatively easier approach: observe that \mathbb{Z}_{17} is a field, which implies that every element has an inverse. But S is closed under multiplication, so we can multiply b^{-1} to b, c, d, d - c, d - b, c - b. Therefore we just need to set b = 1 and verify for all c, d in S and in \overline{S} .

Either way, this graph shows that R(4,4) > 17. By previous problems, $R(4,4) \le 2 * R(3,4) = 18$. 18. Hence R(4,4) = 18.

Problem 8.

(i) Let $n = R_{r-1}(R(s_1, s_2), s_3, ..., s_r)$. For any *r*-coloring *c* on K_n , if we view color 1 and color 2 as the same color, then *c* gives a (r-1)-coloring. As a result, there exists either a K_{s_i} of color $i \ge 3$ or a $K_{R(s_1,s_2)}$ of color 1 and 2. If it is the first case, then we are done. If it is the second case, by definition, this subgraph contains either a K_{s_1} of color 1 or a K_{s_2} of color 2. Therefore any *r*-coloring on K_n contains some K_{s_i} of color *i*. By the minimality Ramsey numbers, we can conclude that $R_r(s_1, ..., s_r) \le n = R_{r-1}(R(s_1, s_2), s_3, ..., s_r)$

(ii)
$$R_3(3,3,3) \le R(R(3,3),3) = R(6,3) \le \binom{7}{2} = 21$$