
Power Round Solution

Duke Math Meet 2017

Problem 1.

We name these six people A, B, C, D, E, F . By pigeonhole principle, A has either three

friends or three strangers among the other five people. Suppose A has three friends. Then

without the loss of generality, we can assume B, C, D are A’s friends. If any two of these three

people are friends with each other, then together with A, they form a group of three of which

every two are friends. If no two of these three people are friends, then B, C, D form a group of

three of which no two are friends. Our statement follows either way. Similar argument if A has

three strangers.

Problem 2.

Let c be a coloring function on Kn Define f : c 7→ G such that f(c) = G = (V,E) where

E = {e ∈ EK | c(e) = red}. It is surjective since any subgraph G′ = (V,E′ ⊆ EK) of Kn we

can have a coloring which color the edges in E′ with red and the rest edges in EK with blue. It

is a valid coloring, so f maps this coloring function to G′. The map f is also injective. To see

that suppose f(c1) = f(c2), then two subgraphs f(c1) and f(c2) has the same edge set. So two

coloring c1 and c2 coincide on these edges. But on all the other edges, the color is blue. So two

coloring are the same on all edges. So the map is one-to-one.

Problem 3.

Let c be a coloring on Kn. Then we denote c̄ be the opposite coloring function of c. That

is, for any edge e, c̄(e) = blue when c(e) = red and c̄(e) = red when c(e) = blue. We can easily

check that c 7→ c̄ is a bijective map on all coloring functions of Kn.

Suppose any coloring c on Kn yields either a red Ks or blue Kt, then c̄ yields either a red Kt

or a blue Ks. This is true for all coloring c̄. Thus, R(t, s) ≤ R(s, t).

To establish equality, let m = R(s, t) − 1. Then by definition, some coloring b on Km does

not contain any red Ks or blue Kt. Then b̄ does not contain any red Kt or blue Ks. This implies

that R(t, s) > m = R(s, t)− 1. Therefore they must equal.

Problem 4.

(i) See figure 1. Dashed lines are red edges and solid lines are blue edges.

(ii) By Theorem 1.9, R(3, 3) ≤ 6. By part (i), R(3, 3) > 5. Therefore R(3, 3) = 6.
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Figure 1: Problem 4 (i)

Problem 5.

(i) Let n = R(s, t) ≤ N . For any complete graph KN , we pick any n vertices and they form

a complete subgraph Kn. For any coloring c on KN , we have a unique coloring c̄ on Kn

that coincides with c on the edges of Kn. Then, by definition of Ramsey number, this

coloring will yields either a red Ks or a blue Kt. This is true for any coloring on KN , so

our statement follows.

(ii) Let N = R(s− 1, t) +R(s, t− 1). Fix a vertex A in KN . Then A has N − 1 edges incident

to it. By pigeonhole principle, A has either R(s−1, t) red edges or R(s, t−1) blue edges. If

it has R(s− 1, t) red edges, then the endpoints of these edges forms a subgraph KR(s−1,t).

So for any 2-coloring, it contains a red Ks−1 or a blue Kt. If it is the second case, we are

done. If it is the first case, the red Ks−1 and A forms a red Ks. So either way there’s either

a red Ks or a blue Kt. Similar arguments goes for the case where A has R(s, t − 1) blue

edges.

(iii) Induction on n = s + t. It is trivial for base case where n = 2 since R(1, s) = 1 for

any s ∈ N. Suppose the statement is true for k. Then for s + t = k + 1, we have

R(s− 1, t) and R(s, t− 1) are finite by induction hypothesis. Then apply part (ii), we have

R(s, t) ≤ R(s− 1, t) + R(s, t− 1). Hence R(s, t) is finite.

(iv) Again we use induction base on n = s + t. The base cases are easy to verify by problem

3 (i). Suppose the inequality is true for all s and t such that k = s + t. Then for all s, t

where s + t = k + 1, we have

R(s, t) ≤
(
s + t− 3

s− 2

)
+

(
s + t− 3

s− 1

)
=

(s + t− 3)!

(s− 2)!(t− 1)!
+

(s + t− 3)!

(s− 1)!(t− 2)!

=
(s + t− 3)!(s− 1 + t− 1)

(s− 1)!(t− 1)!
=

(
s + t− 2

s− 1

)
(v) For any k ∈ N, 4k2 ≥ 2k · (2k − 1). So 4n(n!)2 ≥ (2n)!. Then,(

2s− 2

s− 1

)
=

(2s− 2)!

(s− 1)!(s− 1)!
≤ 22s−2

PAGE 2



Duke Math Meet 2017

Problem 6.

(i) Let v1, ..., v3s−1 be 3s − 1 vertices. Color the edge vi and vj with red if i − j ∈ {s, s +

1, ..., 2s− 1} (mod 3s− 1) and color all other edges with blue. Notice that 3s− 1 < 3s and

3 · (2s− 1) < 2 · (3s− 1). Then for any distinct i, j, k, we have (i− j) + (j − k) + (k− i) =

0 (mod 3s − 1). Therefore at least one of i − j, j − k and k − i is either less than s or

greater than 2s − 1. So one of the edges among vertices vi, vj and vk are colored blue. It

then follows that this coloring contains no red K3.

Now it suffices to show that no blue Ks+1 exists for this coloring. Suppose there is a blue

K = Ks+1, then we can assume that v1 is in the subgraph K. Accordingly, vs+1, ..., v2s
can’t be in the subgraph K. So in the set P = {v2, ..., vs, v2s+1, ..., v3s−1}, we need to

have s vertices in K. Let edge ei = {vi+1, v2s+i for i = 1, ..., s − 1. Then the ei is colored

red. There are s− 1 red edges but we need to pick s vertices in the set P . By pigeonhole

principle, ei is in K for some i. Then K can’t be a blue Ks+1.

By this construction, there’s a coloring on K3s−1 such that it contains neither red K3 nor

blue Ks+1. Hence R(3, s + 1) > 3s− 1.

(ii) Part (i) showed that R(3, 4) > 8. So we only need to verify that any 2-coloring on K9 yields

a red K3 or a blue K4. Fix a vertex A. We know that A has 8 edges. Then we have three

situations.

Suppose at least 6 of them are blue, then the endpoints of blue edges form a K6. By

Theorem 1.9, it has either a red K3 or a blue K3. Either case, together with A, the graph

contains either a red K3 or a blue K4.

Suppose at most 4 of them are blue. In other word, at least 4 edges incident to A are

red. Then if any pair of the endpoints has a red edge, we are done. So all end points are

connected with each other by blue edges. But that gives us a blue K4.

The only case that hasn’t been verified is that 3 edges of A are red and 5 are blue. Now

we consider other vertices. It turns out that if any vertex doesn’t have exactly 3 red edges,

by previous discussion, we can find either a red K3 or a blue K4. So there are 27 red edges

in total if add up the number of red edges on all 9 nodes. But notice that every edge has

two endpoints, which means they were counted twice. So we have 13.5 red edges in K9.

That leads to a contradiction. So at least one vertex doesn’t have exactly 3 red edges. This

concludes our proof.

Problem 7.

Suppose we have four points a, b, c, d ∈ Z17. Without the loss of generality, we can assume

that 0 ≤ a < b < c < d ≤ 16. In fact, we can also assume a = 0, otherwise we will just rotate

the numbering to make a = 0.

Suppose they a red K4, that means i−j = ±1, ±2, ±4, ±8 (mod 17) for all i, j ∈ {a, b, c, d}.
Let S = {1, 2, 4, 8, 9, 13, 15, 16}. Then b, c, d, d− c, c− b, d− b ∈ S. A straightforward search will

show that no such b, c, d exist. Do the similar to S̄ will prove that no monochromatic complete

subgraph in K17.

There’s a relatively easier approach: observe that Z17 is a field, which implies that every

element has an inverse. But S is closed under multiplication, so we can multiply b−1 to b, c, d, d−
c, d− b, c− b. Therefore we just need to set b = 1 and verify for all c, d in S and in S̄.
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Either way, this graph shows that R(4, 4) > 17. By previous problems, R(4, 4) ≤ 2∗R(3, 4) =

18. Hence R(4, 4) = 18.

Problem 8.

(i) Let n = Rr−1(R(s1, s2), s3, ..., sr). For any r-coloring c on Kn, if we view color 1 and color

2 as the same color, then c gives a (r − 1)-coloring. As a result, there exists either a Ksi

of color i ≥ 3 or a KR(s1,s2) of color 1 and 2. If it is the first case, then we are done. If it

is the second case, by definition, this subgraph contains either a Ks1 of color 1 or a Ks2 of

color 2. Therefore any r-coloring on Kn contains some Ksi of color i. By the minimality

Ramsey numbers, we can conclude that Rr(s1, ..., sr) ≤ n = Rr−1(R(s1, s2), s3, ..., sr)

(ii) R3(3, 3, 3) ≤ R(R(3, 3), 3) = R(6, 3) ≤
(

7

2

)
= 21
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