
Power Round: Ramsey Theory

Duke Math Meet 2017

During this round, we will explore some results in Ramsey theory. Some of the later problems

may need earlier results, so feel free to use any previous parts even if you are not able to solve

them yet. You can also use any given theorems or definitions in this handout.

We will assume that the natural numbers (N) start with 1.

1 Introduction

Problem 1. (2 points) There are six people at a party. We assume that for every pair of them,

they are either friends or not friends (i.e. strangers). Prove that either there are three people all

of whom are friends, or there are three people of whom no two are friends.

(Hint: show that there is someone who has either three friends or three strangers)

This result is a special case of a theorem published by Ramsey in 1930. The original theorems

of Ramsey have been extended into many directions, resulting what is now known as Ramsey

Theory. This famous ”party theorem” highlights the flavor of Ramsey theory - the idea that

some patterns are unavoidable when the structure is large enough. Another well-known example

is the pigeonhole principle, which states that no matter how we partition a set of kn+1 elements

into k subsets, there exist one subset that has at least n elements. In this handout, we aim

to examine some similar results of this type and in particular we are going to study Ramsey

numbers.

The generalizations of this problem are easier to formulate with Graph Theory. So let’s first

introduce some basic concepts.

Definition 1.1. A graph G = (V,E) is an ordered pair such that V is a set of elements, usually

called vertices or nodes, and E ⊆ {{u, v}| u, v ∈ V, u 6= v} is the set of edges.

Definition 1.2. We say that G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

Definition 1.3. An r-coloring on the edges of a graph G = (V,E) is a coloring function c : E →
{1, 2, .., r}, i.e. we are assigning each edge one of the r colors. When r = 2, we usually use the

term “red-blue coloring” with the coloring function c : E → {red, blue}.

Definition 1.4. A complete graphKn = (V,E) is graph such that |V | = n and E = {{u, v}|u, v ∈
V, u 6= v}.1 In other words, Kn is a graph with n vertices and every pair of its vertices has an

edge.

Definition 1.5. Let Kn = (V,E) be a complete subgraph of G and c be a r-coloring on the

edges of G, we say Kn is of color j if c(e) = j for all e ∈ E. We say Kn is monochromatic if

there exists a color j ∈ {1, 2, ..., r} such that Kn is of color j.
1Throughout this handout, we will use the notation |S| to denote the number of elements in the set S
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Example 1.6. Let G = (V,E) with V = {v1, v2, v3, v4, v5, v6} and E = {{v1, v2}, {v1, v3},
{v1, v4}, {v1, v5}, {v1, v6}, {v3, v4}, {v3, v5}, {v4, v5}}. Usually we can picture a graph by

drawing vertices and edges. For instance, figure 1a gives us a visualization of graph G.

Example 1.7. Let G be the graph defined in example 1.6 and G′ = (V ′, E′) with V ′ =

{v1, v3, v4, v5} ⊆ V and E′ = {{v1, v3}, {v1, v4}, {v1, v5}, {v3, v4}, {v3, v5}, {v4, v5}} ⊆ E.

Then G′ is a subgraph of G.

Example 1.8. G′ defined in example 1.7 is a complete graph with four vertices. Suppose c is a

red-blue coloring on the edges of G with c({v1, v2}) = c({v1, v3}) = c({v1, v4}) = c({v3, v4}) =

red and c({v1, v5}) = c({v1, v6}) = c({v4, v5}) = c({v4, v5}) = blue. Then we can picture this

coloring with figure 1b.
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(a) Graph G = (V,E)
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(b) Red-blue coloring on G.

(red: dashed lines; blue: solid lines)

Figure 1: Example 1.6, 1.7 and 1.8

Theorem 1.9. For any red-blue coloring on a complete graph K6, there exists a monochromatic

subgraph K3.

Theorem 1.9 is a rephrase of problem 1 with graph theory. Indeed, suppose those six people

form a vertex set of a complete graph. If two people are friends with each other, we color the

edge connecting them with red, otherwise we color it with blue. Problem 1 simply says that

there’s a group of three people such that the edges connecting them are of the same color. Then

this group forms a monochromatic subgraph K3.

Problem 2. (1 point) Suppose V is a vertex set with |V | = n and Kn = (V,EK) is the complete

graph on the vertex set V . Show that there’s a one-to-one correspondence between subgraphs

G = (V,E ⊆ EK) of Kn on the vertex set V and 2-coloring functions c on the edges of Kn.

2 The Ramsey Numbers

Definition 2.1. Given s, t ∈ N. the Ramsey number R(s, t) is the smallest value of n ∈ N such

that every red-blue coloring of a complete graph Kn yields either a red subgraph Ks or a blue

subgraph Kt.

PAGE 2



Duke Math Meet 2017

Here are some basic properties of Ramsey numbers.

Problem 3. Given s, t ∈ N. Prove the following properties:

(i) (1 point) R(2, s) = s.

(ii) (2 points) R(s, t) = R(t, s).

Problem 4.

(i) (1 point) Show that there exists a red-blue coloring on the edges of K5 that contains no

monochromatic K3.

(ii) (1 point) Show that R(3, 3) = 6.

3 Bounds on Ramsey Numbers

Although no formula has been found for general Ramsey numbers, the bounds on Ramsey num-

bers are well-studied. The following result by Erdos and Szekeres gives an upper bound on

Ramsey numbers.

Problem 5. Given s, t ∈ N.

(i) (1 point) If R(s, t) ≤ N for some positive integer N . Show that for any two coloring of

KN , there exists either a red Ks or a blue Kt.

(ii) (2 points) Assuming R(s− 1, t) and R(s, t− 1) are finite, show that

R(s, t) ≤ R(s− 1, t) + R(s, t− 1)

(iii) (1 point) Prove by induction that R(s, t) is finite for all s, t ∈ N.

(iv) (2 points) Prove that2

R(s, t) ≤
(
s + t− 2

s− 1

)
(v) (1 point) Show that

R(s, s) ≤ 22s−2

4 Exact Ramsey Numbers R(s, t) for Small s and t

We showed in problem 3 that R(2, s) = s for all s ∈ N. It is natural to think about R(3, s). The

following problem establish a lower bound for such Ramsey numbers.

Problem 6.

(i) (2 points) In figure 2, we view solid lines as red edges and view all pairs of nodes that are

not connected as blue edges. Then this graph shows that R(3, 4) > 8. By extending this

construction, show that R(3, s + 1) > 3s− 1 for all integers s ≥ 2.

2We use the notation

(
n

k

)
=

n!

(n− k)! · k!
for binomial coefficient. 0! = 1 by convention.
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(ii) (2 points) Show that R(3, 4) = 9.

Figure 2: A graph shows that R(3, 4) > 8

Problem 7. (2 points) By considering the graph with vertex set Z17 (the integers modulo 17)

in which the pair (i, j) is connected by an edge if and only if

i− j = ±1, ±2, ±4, ±8 (mod 17),

show that R(4, 4) = 18.

5 Generalized Ramsey Numbers for r-coloring

Definition 5.1. Given r ≥ 2 and s1, s2, ..., sr ∈ N. The generalized Ramsey number

Rr(s1, s2, ..., sr) is the smallest value of n such that for any r-coloring on the edges of Kn,

there’s a complete subgraph Ksj of color j for some color j ∈ {1, 2, ..., r}.

By definition, we have R2(s1, s2) = R(s1, s2).

Problem 8.

(i) (2 points) Show that

Rr(s1, s2, ..., sr) ≤ Rr−1(R(s1, s2), s3, ..., sr)

(ii) (2 points) Find an upper bound for R3(3, 3, 3) and justify it.
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