DUKE MATH MEET 2016

TIEBREAKER SOLUTIONS

1. The equation has roots if $(b+2n)^2 - 4(a+n)(c+n) = b^2 - 4ac + 4n(b-a-c) \ge 0$. If $b-a-c \ge 0$ then $b^2 \ge (a+c)^2 \ge 4ac$. If b-a-c < 0, then for some large enough n, then $b^2 - 4ac + 4n(b-a-c) < 0$. Hence it is enough to find $b \ge a+c$.

The number of solutions $a+c \leq i$ is equal to the number of solutions to a'+c'+d' = i-2where $a', c', d' \geq 0$ which is $\binom{i}{2} = \frac{i(i-1)}{2}$. $\sum_{i=1}^{10} \frac{i(i-1)}{2} = \boxed{165}$.

- 2. We can bound the *n* by using minimum area. So we have 1(2) + 3(4) + 5(6) + 7(8) + 9(10) = 190 and 1(10) + 2(9) + 3(8) + 4(7) + 5(6) = 110. So $11 \le n \le 13$. Using a rotating flower shape, we can see that 11 works.
- 3. Call the point *B* the point on the original circle at which the aircraft is positioned when the missle is fired. We claim that the path of the missile is a circle with radius that has *AB* tangent to it. Let *P* be some arbitrary point along the path of the aircraft. Call the intersection of *PA* with the new circle be point *M*. Then $\angle PAB$ is half the measure of the arc *MA*. Since the missile and aircraft is the same speed, they should travel equal distance in equal times, so PB = AM. Since the measure of *PB* is the measure of $\angle PAB$, the radius of the smaller circle is half the radius of the larger. Hence the missile travels half the circumference of the circle or $\boxed{6\pi}$.